Character Theory of Symmetric Groups and Subgroup Growth of Surface Groups
نویسندگان
چکیده
منابع مشابه
commuting and non -commuting graphs of finit groups
فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...
15 صفحه اولRegular Character Tables of Symmetric Groups
We generalize a well-known result on the determinant of the character tables of finite symmetric groups. It is a well-known fact that ifXn is the character table of the symmetric group Sn, then the absolute value of the determinant of Xn equals an, which is defined as the product of all parts of all partitions of n. It also equals bn, which is defined as the product of all factorials of all mul...
متن کاملRATIONAL CHARACTER TABLE OF SOME FINITE GROUPS
The aim of this paper is to compute the rational character tables of the dicyclic group $T_{4n}$, the groups of order $pq$ and $pqr$. Some general properties of rational character tables are also considered into account.The aim of this paper is to compute the rational character tables of the dicyclic group $T_{4n}$, the groups of order $pq$ and $pqr$. Some general properties of rational charact...
متن کاملAFFINE SUBGROUPS OF THE CLASSICAL GROUPS AND THEIR CHARACTER DEGREES
In this paper we describe how the degrees of the irreducible characters of the affine subgroups of the classical groups under consideration can be found inductively. In [4] Gow obtained certain character degrees for all of the affine subgroups of the classical groups. We apply the method of Fischer to the above groups and, in addition to the character degrees given in [4], we obtain some ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the London Mathematical Society
سال: 2002
ISSN: 0024-6107
DOI: 10.1112/s0024610702003599